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Overview

• New technology and new capabilities: 
aberration correctors and monochromators

• New applications:
– imaging and chemical analysis with single-

atom sensitivity
– imaging & spectroscopy of point defects
– local valence-band spectroscopy
– 3D, atomic scale imaging by tomography and 

optical sectioning
– coherent scattering at nanometer resolution
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probe raster 
scanned

• high-angle detector 
(no Bragg beams)

• low-angle, BF, and 
spectrometer also 
available

• views structure in 
projection along the 
beam direction
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Aberrations & Correcting Them

Current electron lenses have large 3rd order spherical aberration:
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Optical micrographs from www-cyanosite.bio.purdue.edu/ images/images.html

P.E. Batson, N. Dellby, O.L. Krivanek, 
Nature 418, 617 (2002).
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Monochromators
• TEM spectroscopic resolution 

limited by ∆E of the beam.
• Beam ∆E controlled by e-e

scattering near the emitter.
• Cold field-emitter can achieve 

0.3 eV; more common Schottky
emitter 0.7 eV.

• Monochromator uses a slit in 
an energy dispersion plane to 
reduce ∆E.

• 0.15 eV achievable on Schottky
system, 0.06 eV on a cold FEG.

P.C. Tiemeijer, Inst. Phys. Conf. Ser. 161, 191 (1999).
P.E. Batson, H. W. Mook,  P. Kruit, Inst. Phys. Conf. Ser. 165, 213 (2000)
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DoE TEAM Project
• TEAM = Transmission Electron Achromatic 

Microscope
• Build the world’s first chromatic aberration 

corrected TEM.
• First instrument for NCEM @ LBL 

concentrated on highest achievable 
resolution.

• Subsequent instruments planned for other 
DoE e-beam centers @ UIUC, ORNL, and 
ANL.

• Cs and Cc correction could allow 1 Å
resolution with a sample area of ~1 cm, 
allowing much more flexibility in in situ
experiments.
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Imaging Single Atoms

1 nm

Sb source on

substrate

Most of the brightest dots are atomic columns with one Sb.
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Imaging Single Atoms
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 Si columns
 Si/Sb columns
 singly-occupied
 doubly-occupied

A Results are consistent with random 
substitution of Sb on Si sites, 
measured with single-Sb sensitivity 
and ~100 % Sb detection efficiency.

First time single atoms have been 
imaged in the bulk!.

 Image A Image B 
# of Sb atoms measured predicted measured predicted 

0 1300 (50) 1300 2240 (70) 2234 
1 230 (30) 223 470 (40) 468 
2 15 (15) 17 20 (20) 45 

 

P. M. Voyles, D. A. Muller, J. Grazul, P. H. Citrin, and H.-J. Gossmann, Nature 416, 826 (2002). 
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Chemistry of Single Atoms

• Varela et al. Phys. Rev. 
Lett. 92, 095502 

• Aberration corrected 
STEM. 

• Sample is lightly La 
doped CaTiO3

• Column 3 contains one 
La atom; spectrum 3 
shows La M4,5 edge

• Column 2 is Ti, shows ~10 % intensity in EELS
• Column 4 is O, shows ~20 % intensity in EELS
• Points the way to single-atom electronic structure

– valence of isolated impurities
– natural or artificial charge ordering
– trap states in semiconductors
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Point Defect Complexes in Si
• At high concentration, 

donor impurities stop 
donating in Si.

• Various donor / point 
defect clusters 
proposed.

• Can’t see the point 
defects directly, but with 
a aberration corrected 
STEM could see the off-
site displacement of the 
heavy donor atoms.

DP2 Sb2V

∆r

Sb2VDP2

Simulated aberration-
corrected STEM images
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Probe Channeling
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• Probe e- couple to 1s state localized on the atomic column, 
acting like a local resolution boost for on-site impurities.

• Compare high-angle image emphasizing heavy atoms, to 
low-angle image emphasizing the lattice: Sb with large ∆r 
will disappear.

• Result is that all Sb’s have ∆r < 0.3 Å, requiring a new 
model for the electrically deactivating defect.

• Voyles et al. PRL 91, 125505 (2003).
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O Vacancies in SrTiO3

– Ti3+

– Ti4+

• exp.

• Muller et al., Nature 430, 
657 (2004).

• PLD homoepitaxial
SrTiO3-δ; δ varied by O 
partial pressure 

• Vacancies appear in
– O K-edge fine structure 

directly
– Ti L2,3 edge, which is 

sensitive to Ti valence
– LAADF image via strain-

induced dechanneling
• Detection limit 1-4 OV
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Imaging Anions Directly

• Jia et al. Science 299, 871 
(2003).

• Cs corrected TEM gives 
phase contrast, which is 
more sensitive to light 
atoms.

• O columns between Cu/O 
columns are resolved.

• Recent reports of detecting 
O vacancies by quantifying 
contrast, but have not been 
demonstrated on well-
controlled samples.

90° tilt boundary in YBa2Cu3O7
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Interband Scattering by EELS

• High ∆E from monochromator
makes transition to conduction 
band visible in low-loss EELS.

• Measurements on single 
nanostructures:

– Correlate bandgap, surface states, 
etc. with size, shape, atomic 
structure, and surface chemistry.

– Measure anisotropy in single 
quantum dots.

– R. Ermi, N. D. Browning, Microsc. 
Microanal. 10 Suppl. 2, 842 (2004).

• Band bending at e.g. interfaces, 
edges of quantum wells.
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3D: Tomography

• Requires monotonic 
intensity response with 
thickness.

• Commonplace in biology, 
where diffraction effects are 
minimal.

• Z-contrast STEM & energy-
filtered TEM are enabling 
materials applications.

• 1 nm resolution achievable 
in 3D.

• EFTEM adds chemical 
information.

J. Harms et al., 
Structure Fold Des 
7,  931-41. (1999)

P. A. Midgley et al., Microsc. Microanal. 10 
Suppl. 3, 148 (2004). 
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3D: Optical Sectioning

Through focus series of Pt2Ru4 catalyst on a-
C support.  Pennycook et al. Microsc. 
Microanal. 10 Suppl. 3, 1172 (2004).

• Aberration correction 
means larger 
numerical apertures, 
limited depth of field.

• 3D imaging by a 
defocus series; 
optical sectioning.

• Current instruments 
vertical resolution of 
6 nm

• Next generation 1.5 
nm.
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Coherent Scattering

log scale 5

4

3

2

1

P
ro

be
 F

W
H

M
 (n

m
)

1.00.80.60.40.2
convergence half-angle (mrad)

• High brightness field-emission sources can create 
coherent electron probes 0.5 – 5 nm in diameter.
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Amorphous Thin Films

• Pair distribution function is 
the basic structural diagnostic 
for amorphous materials.

• McBride [Ultramic. 76, 115 
(1999)] developed a method 
for measuring PDF from ~2 
nm volumes by deconvolution
of convergent probe.

• Useful for thin films, interface 
layers, integrannular layers.

HfO2 replacement gate dielectric 
with “amorphous” but heavily 
ordered structure (Ho et al. JAP 
93, 1477 (2003).
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Spatial Fluctuations in Diffraction
Different 1.5 nm areas:• Coherent probe 

size ≅ structural 
correlation length.

• Magnitude of 
spatial fluctuations 
reveals 
heterogeneities in 
amorphous 
structure.

• Spatial analogy to 
photon correlation 
spectroscopy.

0.3 Å-1

Large area: 
average S(q)

Voyles and Muller, 
Ultramicroscopy 93, 
147 (2002).
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Fluctuation TEM
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• Real amorphous 
semiconductors are not 
ideal continuous 
random networks 
(Gibson and Treacy
PRL 78, 1074 (1997).

• Al-Sm metallic glass 
with high critical cooling 
rate contains structural 
order (Stratton et al. 
MRS Proc. 806 M9.4 
(2003).
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Future Applications: Biomaterials

• Persistence length in 
polymers from angular 
correlation along the 
chain.

• Phase separation in 
block copolymers

• Proteins
– single particles in 

amorphous ice
– set of many single-

particle patterns contain 
more data than the 
average 70S ribsomes from e. coli imaged 

in different orientations (Gao et al. 
Ultramicroscopy 93, 169 (2002)
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Perennial Limitations
• Samples must be thin

– <10 nm for high-resolution measurements on 
typical crystals

• Samples must be in vacuum
– Some environmental cell work in gas (Lee et al. 

Rev. Sci. Inst. 62, 1438 (1991)) and now liquid 
environments (Williamson et al. Nature Materials 
2, 532 (2003)).

• Radiation damage
– Several applications (e.g. spectroscopic 

identification of oxygen vacancies) limited by 
signal to noise, which is fundamentally limited by 
damage.

– 3D imaging will require very high dose.
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Summary

• Current or near-future EM offers: 
– Structural and chemical characterization at 

sub-Ångstrom resolution and single atom 
sensitivity.

– Characterization of point defects under the 
right conditions.

– <0.2 eV resolution spectroscopy of individual 
nanostructures, impurities, & defects.

– 3D, nanometer resolution imaging
– Nanoscale coherent scattering for 

characterization of amorphous materials
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